alvantara: (Default)
[personal profile] alvantara
Группа исследователей рассказала, как можно заставить нейронные сети, умеющие определять, что изображено на картинке или фотографии, самих начать писать картины. Для этого использовались нейросети, предназначенные для распознавания изображений: получив фотографию или рисунок, они выясняют, какие именно объекты на ней изображены.

  • Иску́сственная нейро́нная се́ть (ИНС) — математическая модель, а также её программное или аппаратное воплощение, построенная по принципу организации и функционирования биологических нейронных сетей — сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге, и при попытке смоделировать эти процессы.


Такие нейросети состоят из 10–30 связанных слоев, которые работают последовательно: получив картинку, они анализируют ее и «сообщают» результаты анализа следующему слою.




Например, первые слои могут искать на изображении края и углы, средние — интерпретировать наборы особенностей в отдельные объекты (например, двери или листья). Наконец, финальные слои объединяют все эти интерпретации воедино и делают выводы о том, что изображено на картинке — например, здание или дерево.

Чтобы получать «картины», исследователи заставляют работать нейронные сети задом наперед: они показывают сети случайный шум и просят «улучшить» его таким образом, чтобы на выходе получилась определенная интерпретация. Например, если попросить нейросеть «найти» в шуме банан, муравья или морскую звезду, та действительно подкорректирует изображение, чтобы в нем проявились узнаваемые черты.


Цель этого процесса — понять, правильно ли нейросеть интерпретирует те или иные объекты. Дело в том, что нейронные сети обучаются на большом количестве примеров. Можно показать им тысячу фотографий вилок, чтобы они определили нужные характеристики (ручка, четыре зубчика) и научились игнорировать лишние (цвет, форма, положение).



По словам исследователей, нейронной сети можно вообще не говорить, что именно нужно «нарисовать» — пусть решает сама. В таком случае ей на вход подают случайную картинку или фотографию, выбирают один из слоев нейросети и просят ее улучшить то, что этот слой найдет. Так как у каждого слоя свой уровень абстракции, то каждый раз получаются разные картинки.



Например, базовые слои, определяющие края и их положение на картинке, будут накладывать на фотографию мазки или простые орнаменты.



А ниже — пример того, что получится, если скормить картинку более «продвинутым» слоям нейронной сети, которые ищут целые объекты на картинках. Разработчики как бы говорят нейросети: «Что бы ты ни увидела, мы хотим побольше этого!». В результате, если сети покажется, что облако похоже на птицу, она сделает его еще более похожим.



Эта нейросеть в основном обучалась на изображениях животных, поэтому она попыталась найти их на фотографии. Правда, получилось немного вперемешку — как объясняют разработчики, это из-за того, что данные хранились на таком высоком уровне абстракции (да, мы тоже ничего не поняли, но выглядит красиво).



Работает это, конечно, не только с облаками. Ниже другие примеры — как горы превращаются в башни, деревья — в здания, а листочки — в птиц.



Чтобы получить действительно интересные картины, исследователи пошли еще дальше: они подавали нейронной сети картинку, затем то, что она выдала — и так вновь и вновь, на каждом шаге увеличивая масштаб изображения. Причем изначально можно скормить нейросети случайный шум, и все равно получится нечто прекрасное.





























Источник


А так работает человеческая нейронная сеть:
"Многомерие матрицы и восприятия"



Принцип тот же. Ассоциативные связи, сознание их компелирует и выдает аналог.

Из той же серии http://alvantara.livejournal.com/69372.html




Много примеров подобных образов сложенных сознанием, фото-шопа и прочего на сайте Чудинова В.А. Здесь















Date: 2015-07-27 08:38 am (UTC)
From: [identity profile] alexey titarenko (from livejournal.com)
офигеть!
вспомнил молодость,
как будто я снова в универе и работаю над дипломом... как давно это было!
хотя уже тогда преподы намекали, что эта методика не нова, но "не шибко афишируется"

Profile

alvantara: (Default)
alvantara

April 2017

S M T W T F S
       1
2 345678
9101112131415
16171819202122
23242526272829
30      

Style Credit

Expand Cut Tags

No cut tags
Page generated Jul. 18th, 2025 08:27 am
Powered by Dreamwidth Studios